Altered insulin secretion associated with reduced lipolytic efficiency in aP2-/- mice.
نویسندگان
چکیده
Recent studies have shown that genetic deficiency of the adipocyte fatty acid-binding protein (aP2) results in minor alterations of plasma lipids and adipocyte development but provides significant protection from dietary obesity-induced hyperinsulinemia and insulin resistance. To identify potential mechanisms responsible for this phenotype, we examined lipolysis and insulin secretion in aP2-/- mice. Beta-adrenergic stimulation resulted in a blunted rise of blood glycerol levels in aP2-/- compared with aP2+/+ mice, suggesting diminished lipolysis in aP2-/- adipocytes. Confirming this, primary adipocytes isolated from aP2-/- mice showed attenuated glycerol and free fatty acid (FFA) release in response to dibutyryl cAMP. The decreased lipolytic response seen in the aP2-/- mice was not associated with altered expression levels of hormone-sensitive lipase or perilipin. The acute insulin secretory response to beta-adrenergic stimulation was also profoundly suppressed in aP2-/- mice despite comparable total concentrations and only minor changes in the composition of systemic FFAs. To address whether levels of specific fatty acids are different in aP2-/- mice, the plasma FFA profile after beta-adrenergic stimulation was determined. Significant reduction in both stearic and cis-11-eicoseneic acids and an increase in palmitoleic acid were observed. The response of aP2-/- mice to other insulin secretagogues such as arginine and glyburide was similar to that of aP2+/+ mice, arguing against generally impaired function of pancreatic beta-cells. Finally, no aP2 expression was detected in isolated pancreatic islet cells. These results provide support for the existence of an adipo-pancreatic axis, the proper action of which relies on the presence of aP2. Consequently, aP2's role in the pathogenesis of type 2 diabetes might involve regulation of both hyperinsulinemia and insulin resistance through its impact on both lipolysis and insulin secretion.
منابع مشابه
Improved Glucose and Lipid Metabolism in Genetically Obese Mice Lacking aP2.
Adipocyte fatty acid-binding protein, aP2, is a member of the intracellular fatty acid binding protein family. Previously, studies have shown increased insulin sensitivity in aP2-deficient mice with dietary obesity. Here, we asked whether aP2-related alterations in lipolytic response and insulin production are features of obesity-induced insulin resistance and investigated the effects of aP2-de...
متن کاملImpaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels.
In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocy...
متن کاملEvaluation of Glutamate Dehydrogenase Activity and Insulin Secretion in Mice Exposed to Dexamethasone
Background and Aims: Diabetes is one of the most important endocrine disrupters and is associated with various hormones, including those that can lead to diabetes. Glucocorticoid use may lead to insulin resistance. Dexamethasone is one of these glucocorticoid compounds. Glutamate dehydrogenase plays a key role in the production of glutamate in the secretion of insulin. Based on these hormonal i...
متن کاملAugmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements.
Impaired coupling of adipose tissue expansion and vascularization is proposed to lead to adipocyte hypoxia and inflammation, which in turn contributes to systemic metabolic derangements. Pigment epithelium-derived factor (PEDF) is a powerful antiangiogenic factor that is secreted by adipocytes, elevated in obesity, and implicated in the development of insulin resistance. We explored the angioge...
متن کاملTransgenic overexpression of hexose-6-phosphate dehydrogenase in adipose tissue causes local glucocorticoid amplification and lipolysis in male mice.
The prereceptor activation of glucocorticoid production in adipose tissue by NADPH-dependent 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has emerged as a potential mechanism in the pathogenesis of visceral obesity and metabolic syndrome. Hexose-6-phosphate dehydrogenase (H6PDH) is an endoplasmic reticulum lumen-resident enzyme that generates cofactor NADPH and thus mediates 11β-HSD1 acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 48 10 شماره
صفحات -
تاریخ انتشار 1999